DGUV Information 209-088 - Reinigen von Werkstücken mit Reinigungsflüssigkeiten

Online-Shop für Schriften

Jetzt bei uns im Shop bestellen

Jetzt bestellen

Anhang 1b - Auszug aus der TRBS 2152 Teil 2/TRGS 722

2.3.2 Konzentrationsbegrenzung

(1) Durch Maßnahmen zur Konzentrationsbegrenzung soll die Konzentration der brennbaren Stoffe unterhalb der unteren oder oberhalb der oberen Explosionsgrenze gehalten werden. Beim Anfahren und Abfahren kann der Explosionsbereich durchfahren werden. Dieses ist in geeigneter Weise zu berücksichtigen.

Hinweis 1

Liegt die Konzentration in einem Arbeitsmittel einschließlich Anlagen und Anlagenteilen über der oberen Explosionsgrenze, besteht zwar im Inneren keine Explosionsgefahr; austretende Gemische können jedoch durch Vermischung mit Luft Explosionsgefahr außerhalb des Anlagenteils hervorrufen.

Hinweis 2

Liegt die Temperatur einer Flüssigkeitsoberfläche in einem Anlagenteil oberhalb des oberen Explosionspunktes, so ist dort nicht notwendigerweise von Gemischkonzentrationen oberhalb der oberen Explosionsgrenze auszugehen.

Bemerkung

Es ist möglich, durch Zugabe von brennbaren Gasen die Gesamtkonzentration der brennbaren Komponenten stets oberhalb der für das gesamte Gemisch gültigen oberen Explosionsgrenze zu halten.

(2) Bei brennbaren Flüssigkeiten wird die untere Explosionsgrenze sicher unterschritten, wenn die Temperatur an der Flüssigkeitsoberfläche hinreichend weit (etwa 5 K bis 15 K, vgl. Nummer 3.2 Absatz 4 Ziffer 2 Buchstabe b der TRBS 2152 Teil 1 TRGS 721) unterhalb des Flammpunktes gehalten wird.

(3) Bei Stäuben ist die Vermeidung explosionsfähiger Gemische durch Begrenzung der Konzentration schwer zu erreichen. Insbesondere ist die Wechselwirkung zwischen aufgewirbeltem und abgelagertem Staub zu beachten. Homogene Staub/Luft-Gemische treten äußerst selten auf. Daher ist es in der Regel nur selten möglich, als Staubkonzentration die Gesamtmenge des Staubs bezogen auf den gesamten Raum oder das Gesamtvolumen eines Arbeitsmittels einschließlich Anlagen und Anlagenteilen zu betrachten und dabei eine gleichmäßige Verteilung anzunehmen.

(4) Bei inhomogener Staubverteilung kann in Teilen von Anlagen und Anlagenteilen sowie Behältern oder Räumen auch dann Explosionsgefahr bestehen, wenn die auf das Gesamtvolumen bezogene Staubmenge außerhalb der Explosionsgrenze liegt.

2.3.3.2
Inertisierung explosionsfähiger Atmosphäre aus brennbaren Gasen und Dämpfen

(1) In Tabelle 1 sind für einige Stoffe die bei Inertisierung sicher zu unter- oder überschreitenden Grenzwerte angegeben.

Hinweis

Es sind hinreichende Sicherheitsabstände zu den experimentell bestimmten Grenzwerten vorzusehen.

2) Bei der totalen Inertisierung werden explosionsfähige Gemische dadurch vermieden, dass das Verhältnis des Partialdruckes des Inertgases zu demjenigen des brennbaren Gases oder Dampfes einen bestimmten Grenzwert (s. Tabelle 1) überschreitet. In der Anlage zu dieser TRBS/TRGS ist ein Rechenbeispiel für eine totale Inertisierung aufgeführt.

Hinweis 1

Die besondere technische Schwierigkeit besteht darin, dass der Partialdruck des brennbaren Gases oder Dampfes oft verfahrenstechnisch oder physikalisch (nämlich entsprechend der Dampfdruckkurve der Flüssigkeit) vorgegeben ist und damit zur Aufrechterhaltung der totalen Inertisierung ein erheblicher Gesamtüberdruck erforderlich sein kann.

(3) Bei der partiellen Inertisierung muss die in Tabelle 1 angegebene Sauerstoffgrenzkonzentration unterschritten oder der Mindestwert des Verhältnisses der Molanteile von Inertgas (N2 oder CO2) und Luft (L) (zur Inertisierung bei beliebiger Zugabe von brennbarem Stoff ) überschritten werden. In der Anlage zu dieser TRBS/TRGS ist ein Rechenbeispiel für eine partielle Inertisierung aufgeführt.

Tabelle 1:
Grenzwerte für die Inertisierung brennbarer Gase und Dämpfe bei 1 bar Gesamtdruck aus der Datenbank "Chemsafe" der DECHEMA

Partielle InertisierungTotale Inertisierung
Brennbarer StoffTemperatur in °CSauerstoffgrenzkonzentration im Gesamtgemisch brennbarer Stoff/Inertgas/Luft bei der Inertisierung mit:Mindestwert des Verhältnisses der Molanteile von Inertgas (N2 oder C02) und Luft (L) notwendig zur Inertisierung bei beliebiger Zugabe von brennbarem StoffMindestwert des Verhältnisses der Molanteile von Inertgas (N2 oder CO2) und brennbarem Stoff (B) notwendig zur Inertisierung bei beliebiger Zugabe von Luft
N2CO2N2/LCO2/LN2/BCO2/B
CmaxO2in mol %CmaxO2in mol %
Acetaldehyd508,4_1,5___
Acrylsäure808,0_1,6___
Benzol1008,511,81,40,74222
i-Butan2010,313,11,00,52813
n-Butan209,6~121,1_27_
Butanal1008,2_1,6___
1-Butanol1308,2_1,6___
t-Butanol1008,6_1,4___
1-Butoxy-2-propanol1008,0_1,6_49_
Butylacetat1009,5_1,2___
Cyclohexan1008,511,31,30,85427
Cyclohexanol1008,8_1,4___
Cyclohexanon1008,0_1,6___
Cyclopropan209,0~12____
Dimethylether208,5_1,5___
1,4-Dioxan1007,0_2,0___
Dipropylenglykoldimethylether1507,4_1,9___
Dipropylether1008,4_1,5___
Ethan208,811,71,30,72111
Ethanol208,5_1,4_17_
Ethylacetat209,8_1,1_23_
Ethylen207,610,51,70,92413
Ethylenoxid20wegen Zerfallsfähigkeit von Ethylenoxid existieren diese Werte nicht1715
Heptan100_10,9_0,9_35
Hexamethyldisiloxan808,9_1,4___
Hexan209,311,6 * (100 °C)1,30,8 * (100 °C)4232 * (100 °C)
1-Hexanol1008,5_1,5___
Kohlenmonoxid204,34,63,11,763
Methan209,913,71,00,4115
Methanol208,1_1,4_7_
Methylethylketon209,5_1,2_26_
Pentan209,3_~1,3_~42_
Pentylacetat1009,2_1,3___
Propan209,812,61,10,62613
Propanol-1209,3_1,3_19_
Propanol-2208,7_1,4_25_
Propylen209,312,61,20,62312
Propylenoxid257,7_1,7_26_
Propylformiat209,8_1,1_21_
Schwefelkohlenstoff204,6_3,5_49_
Tetrahydrofuran1008,3_1,5___
Toluol1009,612,91,10,64221
Vergaserkraftstoff20~9,3_~1,3_~42_
Wasserstoff204,35,23,41,81712
Xylol1009,713,11,10,64221

2.4.4.2
Natürliche Lüftung

(1) Natürliche Lüftung ist Luftaustausch ohne gezielte technische Mittel. Der Luftaustausch erfolgt auf Grund von Dichte- bzw. Druckdifferenzen der Luft räumlich benachbarter Bereiche, ausgelöst durch Temperaturdifferenzen innerhalb/außerhalb eines Raumes oder durch Wind.

(2) Natürliche Lüftung kann als Explosionsschutzmaßnahme nur in Anspruch genommen werden, wenn die notwendigen treibenden Kräfte der natürlichen Lüftung einen ausreichenden Luftaustausch gewährleisten.

Bemerkung 1

In Räumen oberhalb Erdgleiche ohne besondere Be- und Entlüftungsöffnungen darf aufgrund von Witterungseinflüssen und baulicher Gestaltung eine Luftwechselzahl von mindestens n = 1 angenommen werden (Ausnahmen: Energiespar-Bauweise). Industriebauten mit Entlüftungsöffnungen im Dachbereich weisen häufig einen höheren Luftwechsel auf.

Bemerkung 2

In Kellerräumen ist mit geringerer natürlicher Lüftung zu rechnen. Es stehen meist nur kleine Öffnungen und Fenster zur Verfügung, Temperaturdifferenzen im Raum können zwar zu Konvektion führen, aber der Luftaustausch mit Luft von außerhalb des betrachteten Raumes ist gering. Als Luftwechselzahl ist bei allseits unter Erdgleiche liegenden Kellerräumen als Richtwert etwa n = 0,4 anzunehmen. Durch gezielte Zu- und Abluftöffnungen lässt sich dieser Wert bis auf ungefähr das Doppelte erhöhen. Eine weitere Erhöhung ist bei großflächigen Wärmequellen (Temperaturdifferenz gegenüber Außentemperatur mind. 5 K) möglich.

Bemerkung 3

Die räumliche Anordnung der Öffnungen von Zuluft und Abluft sollte die natürliche Konvektion unterstützen. Bei kleinen Räumen wird in der Regel die beste Wirkung erzielt, wenn sich die Öffnungen raumdiagonal gegenüber befinden (Querlüftung). Die sich in größeren Räumen deutlich ausprägenden Konvektionswalzen können genutzt und unterstützt werden durch entsprechende Abluftöffnungen im Deckenbereich.

Bemerkung 4

Wenn bauliche Maßnahmen für ungehinderten Ein- und Auslass von Luft vorgesehen werden und als treibende Kräfte für natürliche Lüftung großflächig andauernd warme Flächen mit einer Temperaturdifferenz von mindestens 5 K gegenüber Außentemperatur zur Verfügung stehen, stellt sich eine natürliche Lüftung ein, die signifikant über einer üblichen technischen Lüftung liegen kann. In diesen Fällen kann die natürliche Lüftung explosionstechnisch gleichwertig behandelt werden wie eine technische Lüftung nach Nummer 2.4.4.3.

2.4.4.3 Technische Lüftung (Raumlüftung)

Technische Lüftung ist der Luftaustausch mit gezielten technischen Mitteln (z. B. Ventilatoren, Luftinjektoren). Sie führt zu einer Reduzierung brennbarer Stoffe innerhalb des betrachteten lüftungstechnischen Bereiches. Sofern die technische Lüftung als Explosionsschutzmaßnahme eingesetzt wird, ist sie hinsichtlich Stärke, Güte und Verfügbarkeit zu bewerten.

Bemerkung 5

Treibende Kraft ist bei der technischen Lüftung entweder Unterdruck (z. B. bei lokaler Absaugung) mit in der Regel niedriger "Reichweite" oder Überdruck (z. B. aus Frischluftauslässen) mit hoher "Reichweite". Dabei sind folgende Erfordernisse zu beachten:

  1. 1.

    Die Wirksamkeit der Lüftung ist in Abhängigkeit von der Wahrscheinlichkeit, mit der explosionsfähige Atmosphäre entstehen kann oder deren Auftreten eingeschränkt werden soll, zu überwachen. Sofern die Überwachung der Lüftung automatisch erfolgt, muss sie sich auf das Auftreten gefährlicher explosionsfähiger Atmosphäre selbst (z. B. durch Gaswarneinrichtungen) oder zumindest auf den zu überwachenden Luftstrom (z. B. durch Strömungswächter) beziehen. Eine Überwachung des Betriebes von Teilen der Lüftungsanlage (z. B. Überwachung der Ventilatordrehzahl) ist in der Regel nicht ausreichend.

  2. 2.

    Das in einem explosionsgefährdeten Abluftsystem geförderte explosionsfähige Gemisch ist in Bereiche ohne Zündgefahren abzuführen; andernfalls sind Maßnahmen gegen Zündgefahren (entsprechend der im Abluftsystem vorliegenden Zone) in diesen Bereichen zu treffen oder es ist ein Flammenrückschlag in das Abluftsystem zu verhindern.

Hinweis

Diese Forderung ist von besonderer Bedeutung für das Vermeiden von Zündgefahren durch nachgeschaltete Abluftreinigungsanlagen.

  1. 3.

    Ansaugen von Zuluft aus explosionsgefährdeten Bereichen darf die Gefährdung nicht erhöhen. Wird Zuluft aus explosionsgefährdeten Bereichen entnommen, sind daher zusätzliche Maßnahmen (z. B. Einsatz von Gaswarneinrichtungen) erforderlich.

  2. 4.

    Zur Auslegung der Lüftung ist die Kenntnis von Ort, maximaler Stärke und Häufigkeit der Quelle explosionsfähiger Atmosphäre erforderlich; hierbei sind Maßnahmen gegen Zündgefahren (entsprechend der im Abluftsystem vorliegenden Zone) in diesen Bereichen zu treffen oder es ist ein Flammenrückschlag in das Abluftsystem zu verhindern.

Hinweis

Diese Forderung ist von besonderer Bedeutung für das Vermeiden von Zündgefahren durch nachgeschaltete Abluftreinigungsanlagen.

  1. 5.

    Zur Auslegung der Lüftung ist die Kenntnis von Ort, maximaler Stärke und Häufigkeit der Quelle explosionsfähiger Atmosphäre erforderlich; hierbei sind auch Betriebsstörungen (z. B. Leckagen an Dichtelementen) zu berücksichtigen.

2.4.4.4
Objektabsaugung

(1) Ist eine Austrittstelle brennbarer Gase, Dämpfe oder Stäube aus einem Anlagenteil bekannt (z. B. Entlüftungs- und Beschickungsöffnungen), so können die austretenden Stoffe gezielt erfasst und abgeführt werden, z. B. durch Randabsaugung an offenen Behältern.

(2) Die Absaugung ist auf der Grundlage der spezifischen Parameter der zu erfassenden Stoffe, der anlagen- und prozesstechnischen sowie der betrieblichen Gegebenheiten auszulegen. Mögliche Störungen sind zu berücksichtigen.

Hinweis

Werden keine besonderen technischen Maßnahmen getroffen, bleibt die Erfassung brennbarer Gase, Dämpfe oder Stäube auf den unmittelbaren Bereich der Objektabsaugung beschränkt.

2.5.3
Gaswarneinrichtungen mit automatischen Schaltfunktionen

(1) Gaswarneinrichtungen können neben der Alarmierung noch zusätzliche Funktionen übernehmen. Die verfahrenstechnische Anlage bleibt dabei in Betrieb. Die Maßnahmen können sich entweder auf die Atmosphäre außerhalb oder auf das Innere der Anlagenteile beziehen. Beim Erreichen einer Schaltschwelle oder bei darüber liegenden, aber noch unbedenklichen Konzentrationen löst die Gaswarneinrichtung über automatische Schaltvorgänge Maßnahmen aus, die erfahrungsgemäß eine Bildung gefährlicher explosionsfähiger Atmosphäre sicher verhindern. Beispielsweise können beim Erreichen der Schaltschwelle besondere Lüftungseinrichtungen durch die Gaswarneinrichtung in Betrieb gesetzt werden. In dem Anlagenteil können weitere Maßnahmen ausgelöst werden, z. B. Herabsetzung des Innendruckes, Absperren der undichten Anlagenteile, Inertisierung, Abschalten von wirksamen Zündquellen.

(2) Diese Maßnahmen haben damit in der Regel einen Einfluss auf die Ausdehnung der gefährlichen explosionsfähigen Atmosphäre oder auf die Wahrscheinlichkeit des Auftretens gefährlicher explosionsfähiger Atmosphäre.

Hinweise zur Inertisierung und Zonenauslegung Auslegung einer Inertisierung

1.1 Partielle Inertisierung

Nachfolgend ist ein Rechenbeispiel für die partielle Inertisierung aufgeführt:

  1. 1.

    Ein bestimmter Prozess mit Propan (als einzigem brennbaren Stoff ) ist bei ca. 20 °C und 1 bar so mit Stickstoff zu inertisieren, dass im Inneren der Anlagenteile und Rohrleitungen keine gefährliche explosionsfähige Atmosphäre entsteht. Die Sauerstoffkonzentration der Gasphase kann überwacht werden.

  2. 2.

    Die Sauerstoffgrenzkonzentration wird Tabelle 1 entnommen (Molgehalt Cmax O2 = 9,8 %, alte Bezeichnung Cmax O2 = 9,8 Vol.%). Im vorliegenden Fall sei bekannt, dass verfahrensbedingt die Sauerstoffkonzentration örtlich und zeitlich um ±1 % (Molgehalt) schwanken kann. Ferner sollen evtl. Schutzfunktionen so schnell wirksam werden, dass nach ihrer Auslösung die Sauerstoffkonzentration maximal noch um 1 % absolut ansteigen kann. Für die Schwankung werden hier 2 % absolut angesetzt, da bei einer möglichen Schwankung von ±1 % um einen mittleren Wert der höchste Wert (der in diesem Beispiel nicht über 9,8 % - dem Wert der Sauerstoffgrenzkonzentration - liegen darf ) und der niedrigste Wert (der z. B. am Ort der Sauerstoffkonzentrationsmessung vorliegen kann) um 2 % auseinanderliegen können.

  3. 3.

    Damit wird die höchstzulässige Sauerstoffkonzentration auf (9,8 - 2 - 1) % = 6,8 % festgelegt. Zur Berücksichtigung der Eigenschaften der Sauerstoffüberwachungseinrichtung (u. a. Messabweichungen, Alarmverzögerungen) wird weiterhin eine Alarmschwelle unterhalb der höchstzulässigen Sauerstoffkonzentration bestimmt. Der hierfür nötige Sicherheitsabstand betrage im vorliegenden Fall 3 %, so dass die Alarmschwelle bei (6,8 - 3) % = 3,8 % liegt. Überschreitet die im Prozess gemessene Sauerstoffkonzentration die Alarmschwelle von 3,8 % (Molgehalt), so werden die Schutzfunktionen ausgelöst.

1.2 Totale Inertisierung

Nachfolgend ist ein Rechenbeispiel für die totale Inertisierung mit zwei unterschiedlichen Inertgasen aufgeführt:

  1. 1.

    In einem Behälter soll Hexan bei 20 °C mit Inertgas (ohne Luft) so unter Druck stehen, dass bei einer Undichtigkeit im Gasraum des Behälters explosionsfähige Atmosphäre im Freien nicht entstehen kann. Hexan hat bei 20 °C einen Sattdampfdruck von ca. 0,16 bar.

  2. a.

    Stickstoff als Inertgas: Der Tabelle 1 ist zu entnehmen, dass für die Inertisierung mit Stickstoff das Verhältnis der Molanteile und damit in guter Näherung der Partialdrücke von Stickstoff und Hexandampf mindestens 42 betragen muss, d. h. der Partialdruck des Stickstoffs muss mindestens bei (42 x 0,16) bar = 6,7 bar liegen. Bei homogener Mischung des Stickstoffs mit dem Hexandampf im Behälter ist somit durch Aufdrücken von Stickstoff ein Gesamtdruck von (6,7 + 0,16) bar = 6,9 bar (entsprechend einem Überdruck gegen Atmosphäre von 5,9 bar) im Behälter erforderlich.

  3. b.

    Kohlendioxid als Inertgas: Bei der Inertisierung mit Kohlendioxid beträgt das Verhältnis der Molanteile von Kohlendioxid zu Hexandampf nach Tabelle 1 mindestens 32. Die analoge Rechnung ergibt, dass zum Erreichen des Schutzziels durch Zugabe von Kohlendioxid ein Gesamtdruck von (32 x 0,16 + 0,16) bar = 5,3 bar (entsprechend einem Überdruck von 4,3 bar) einzustellen ist.