TRBS 3146/TRGS 746 - TR Betriebssicherheit 3146/TR Gefahrstoffe 746

Online-Shop für Schriften

Jetzt bei uns im Shop bestellen

Jetzt bestellen

Anhang 4 TRBS 3146/TRGS 746 - Bestimmung der erforderlichen Wassermenge für eine Wasserberieselung oder Wasserbeflutung für ungestörte Oberflächen

Die Diagramme wurden nach folgenden Beziehungen ermittelt:

A Unterfeuerung (Full engulfment)

Die erforderlichen Berieselungs-/Beflutungsstromdichten sind in Abhängigkeit vom Behältervolumen für Kugelbehälter und stehende bzw. liegende zylindrische Behälter in den Abbildungen 8a und 8b dargestellt; die dazugehörigen Berieselungs-/Beflutungsdichten ergeben sich aus den Abbildungen 9a und 9b.

Die entsprechenden Diagramme wurden nach folgenden Beziehungen ermittelt:

aab_3436_11_02.gif

B Unterfeuerung

Bei der Unterfeuerung erfolgt die Erwärmung eines Behälters durch eine Flamme unterhalb des Behälters im Gegensatz zu dem full engulfment, bei dem der gesamte Behälter in Flammen eingehüllt ist.

Von dem von einer Flamme abgegebenen Wärmestrom aab_3436_12_02.gifgelangt nur der Anteil aab_3436_13_02.gif auf die Behälteroberfläche und wird dort von dem Kühlwasser absorbiert. Es gilt:

aab_3436_14_02.gif

mit ØBF Einstrahlzeit (geometrische Größe).

Die Berechnung der erforderlichen Kühlwassermassenströme mit Hilfe der Einstrahlzahl und unter entsprechender Anwendung des Rechenganges für full engulfment ist sehr aufwendig, im Einzelfall jedoch möglich.

Im Folgenden werden für zwei Sonderfälle vereinfachte Berechnungsmöglichkeiten vorgestellt:

  1. 1.

    Behälter befindet sich teilweise, d. h. bis zu einer bestimmten Höhe, in Flammen:

    Dann ist K1 in den Gleichungen 1a und 1b zu ersetzen durch K1’; wobei gilt:

    K1’ = K1 · A’/A

    mit A’ Anteil der Behälteroberfläche A, der in Flammen steht.

  2. 2.

    Behälter befindet sich oberhalb einer Flamme:

    Der Lösungsweg ist analog dem für den Nachbarschaftsbrand anzuwenden:

    (Modell: Flamme = Kreisscheibe).

C Nachbarschaftsbrand

Wie bei der Unterfeuerung gelangt auch beim Nachbarschaftsbrand nur ein Teil des von einer Flamme abgegebenen Wärmestromes auf die Behälteroberfläche, Gleichung 2 findet ebenso Anwendung.

Mit Hilfe folgenden Modells (Flamme = Kreisscheibe) kann die größte, auf der Behälteroberfläche absorbierte Wärmestromdichte aab_3436_15_02.gif berechnet werden:

aab_3436_16_02.gif
mit
a=Abstand Flamme-Behälter
AF=Flammengröße.

Die auf der Behälteroberfläche auftreffende Wärmestromdichte ist in Abbildung 10 über der Entfernung aufgetragen; man erkennt beispielsweise bei einer Flammengröße von 10 m2, dass sich aab_3436_17_02.gif von 100 kW/m2 (Abstand 0) schon in einer Entfernung von 5 m auf 11 kW/m2 verringert.

Setzt man den so errechneten Wert in die Gleichungen 1a und 1b ein, so sind bzw. Г bekannt.

Berieselung:

Kühlung eines Behälters mit Wasser. Das Wasser wird gleichmäßig mit Hilfe eines Düsensystems auf die zu kühlende Oberfläche aufgebracht.

Beflutung:

Kühlung eines Behälters mit Wasser. Das Wasser wird zentral über einen im oberen Behälterbereich angeordneten Zahnkranz aufgebracht. Das überlaufende Wasser läuft als gleichmäßiger Wasserfilm an der Behälteroberfläche ab.

Berieselungs-(Beflutungs-)stromdichte ?:

Wassermassenstrom zur Berieselung (Beflutung), bezogen auf die zu kühlende Behälteroberfläche, in kg/(m2 · h).

Berieselungs-(Beflutungs-)stromdichte aab_3436_18_02.gif:

Wassermassenstrom zur Berieselung (Beflutung), bezogen auf den größten horizontalen Behälterumfang, in kg/(m2 · h).

Unterfeuerung:

Brandereignis, bei dem in der Behältertasse angesammelte Flüssigkeit abbrennt.

Full engulfment:

Unterfeuerung, bei der der unterfeuerte Behälter vollständig in Flammen eingehüllt ist.

Nachbarschaftsbrand:

Brandereignis außerhalb der Behältertasse.

Wärmestromdichte aab_3436_19_02.gif:

Von einer Flamme abgegebener Wärmestrom, bezogen auf die Flammenoberfläche, in kW/m2.

Wärmestromdichte aab_3436_20_02.gif:

Der Anteil des von der Flamme abgegebenen Wärmestromes, der von der Behälteroberfläche bzw. von dem Kühlwasser, das an seiner Oberfläche abläuft, absorbiert wird, bezogen auf die Behälteroberfläche, in kW/m2.

Es bedeuten:

A=Behälteroberfläche
AF=Flammengröße
a=Abstand Flamme - Behälter
cp=spezifische Wärmekapazität von Wasser
F=Faktor (1 für Beflutung, 2 für Berieselung)
Г=Berieselungs-/Beflutungsdichte [kg · (m-1 · h-1)]
r=Verdampfungsenthalpie von Wasser
ØBF=Einstrahlzahl (geometrische Größe)
θ1 =Kühlwassertemperatur = 20°C
θ2 =Siedetemperatur von Wasser = 100°C
?=Berieselungs-/Beflutungsstromdichte [kg · (m-2 · h-1)]
aab_3436_13_02.gif=absorbierter Wärmestrom
aab_3436_12_02.gif=abgegebener Wärmestrom der Flamme
aab_3436_15_02.gif=absorbierte Wärmedichte
aab_3436_19_02.gif=Wärmestromdichte der Flamme; z. B. für Dieselkraftstoff = 100 kW · m-2
U=größter horizontaler Behälterumfang
aab_3436_21_02.gif

Abbildung 8a:
Ermittlung der Berieselungsstromdichte ?

aab_3436_22_02.gif

Abbildung 8b:
Ermittlung der Beflutungsstromdichte ?

aab_3436_23_02.gif

Abbildung 9a:
Ermittlung der Berieselungsdichte Г

aab_3436_24_02.gif

Abbildung 9b:
Ermittlung der Beflutungsdichte Г

aab_3436_25_02.gif

Abbildung 10:
Ermittlung der absorbierten Wärmestromdichte aab_3436_17_02.gif