

Quelle: https://www.arbeitssicherheit.de//document/830a9f95-d35a-31e3-bae7-7b6935f46ba7

Bibliografie

Titel Technische Regeln für Dampfkessel Berechnung von Kugelschalen mit Ausschnitten gegen

Dehnungswechselbeanspruchung der Lochränder innen (TRD 303 Anlage 1)

Amtliche Abkürzung TRD 303 Anlage 1

Normtyp Technische Regel

Normgeber Bund

Gliederungs-Nr. Keine FN

Abschnitt 3 TRD 303 Anlage 1 - Einzelspannungen (1)

3.1 Ideal-elastische mechanische Lochrandspannungen infolge Innendruck

3.1.1 Die Lochrandspannung für Kugelschalen mit radialen Abzweigen wird ermittelt aus

$$\sigma_{ip} = \alpha_m \times \alpha_v \times (d_m / (4 \times s_b)) \times p^*$$
 (2)

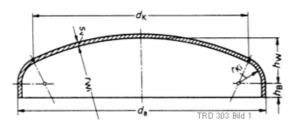
mit $d_{m} = 0.5 (d_{a} + d_{j})$

und S_b = (gemessen) oder S_b = $S_e \times 1,15$ (gepreßt)

oder $S_b = S_e$ (gedreht).

Bei gewölbten Böden nach DIN 28011 oder 28013 kann $S_b = s_e$ 1,05, jedoch nicht weniger als $S_b >= S_e + 1$ mm, eingesetzt werden.

Der Formfaktor α^{ψ} ist bei radialen zylindrischen Stutzen bzw. bei kreisrunden Ausschnitten α^{ψ} = 1.


Für den Formfaktor α_m , darf eingesetzt werden:

∞m = 2,0	bei durchgesteckten und ohne Restspalt volltragend verschweißten Stutzen. die selbst nicht unter Innendruck stehen, z. B. Thermometerhülsen oder Mannlochverstärkungen mit innen liegendem Deckel
αm= 2,5	bei aufgesetztem oder durchgestecktem und ohne Restspalt volltragend verschweißtem Stutzen, wenn sb/di >= 0,04 ist
αm= 2,9	bei anderen Bauarten und wenn Sb/di < 0,04

- **3.1.2** Bei schrägen Abzweigen mit einem Bohrungsdurchmesser $d_{Ai} > S_b$ sowie bei elliptischen Ausschnitten ist α^{ψ} = Verhältnis große Halbachse zu kleiner Halbachse.
- 3.1.3 Benachbarte Ausschnitte werden bei dieser Betrachtung wie Einzelausschnitte nach Abschnitt 3.1.1 behandelt.
- 3.1.4 Die Unrundheit wird nicht zusätzlich in Rechnung gestellt.
- 3.2 Idealelastische Spannung am Lochrand infolge Wandtemperaturdifferenz

Die Berechnung erfolgt wie in TRD 301 Anl. 1 Abschnitt 3.2. Abweichend ist lediglich der Formfaktor Φ_{K} für Kugelschalen anstelle von Φ i für Zylinderschalen einzusetzen (Bild 1).

Fußnoten

(1) Red. Anm.: Außer Kraft am 1. Januar 2013 durch die Bek. vom 17. Oktober 2012 (GMBI S. 902)